Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Ann Biomed Eng ; 52(6): 1693-1705, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38502430

ABSTRACT

Convection-enhanced drug delivery (CED) directly infuses drugs with a large molecular weight toward target cells as a therapeutic strategy for neurodegenerative diseases and brain cancers. Despite the success of many previous in vitro experiments on CED, challenges still remain. In particular, a theoretical predictive model is needed to form a basis for treatment planning, and developing such a model requires well-controlled injection tests that can rigorously capture the convective (advective) and diffusive transport of an infusate. For this purpose, we investigated the advection-diffusion transport of an infusate (bromophenol blue solution) in the brain surrogate (0.2% w/w agarose gel) at different injection rates, ranging from 0.25 to 4 µL/min, by closely monitoring changes in the color intensity, propagation distance, and injection pressures. One dimensional closed-form solution was examined with two variable sets, such as the mathematically calculated coefficient of molecular diffusion and average velocity, and the hydraulic dispersion coefficient and seepage velocity by the least squared method. As a result, the seepage velocity was greater than the average velocity to some extent, particularly for the later infusion times. The poroelastic deformation in the brain surrogate might lead to changes in porosity, and consequently, slight increases in the actual flow velocity as infusion continues. The limitation of efficiency of the single catheter was analyzed by dimensionless analysis. Lastly, this study suggests a simple but robust approach that can properly capture the convective (advective) and diffusive transport of an infusate in an in vitro brain surrogate via well-controlled injection tests.


Subject(s)
Brain , Convection , Drug Delivery Systems , Brain/metabolism , Bromphenol Blue/pharmacokinetics , Bromphenol Blue/administration & dosage , Models, Biological , Humans , Diffusion , Animals
2.
Micromachines (Basel) ; 14(11)2023 Oct 31.
Article in English | MEDLINE | ID: mdl-38004903

ABSTRACT

The surface-tension-driven coalescence of drops has been extensively studied because of the omnipresence of the phenomenon and its significance in various natural and engineering systems. When two drops come into contact, a liquid bridge is formed between them and then grows in its lateral dimensions. As a result, the two drops merge to become a bigger drop. The growth dynamics of the bridge are governed by a balance between the driving force and the viscous and inertial resistances of involved liquids, and it is usually represented by power-law scaling relations on the temporal evolution of the bridge dimension. Such scaling laws have been well-characterized for the coalescence of unconfined or freely suspended drops. However, drops are often confined by solid or liquid surfaces and thus are a different shape from spheres, which affects their coalescence dynamics. As such, the coalescence of confined drops poses more complicated interfacial fluid dynamics challenges compared to that of unconfined drops. Although there have been several studies on the coalescence of confined drops, they have not been systematically reviewed in terms of the properties and geometry of the confining surface. Thus, we aim to review the current literature on the coalescence of confined drops in three categories: drop coalescence on a solid surface, drop coalescence on a deformable surface, and drop coalescence between two parallel surfaces with a small gap (i.e., Hele-Shaw cell), with a focus on power-law scaling relations, and to suggest challenges and outlooks for future research on the phenomena.

3.
Micromachines (Basel) ; 14(7)2023 Jul 18.
Article in English | MEDLINE | ID: mdl-37512753

ABSTRACT

Geologic subsurface energy storage, such as porous-media compressed-air energy storage (PM-CAES) and underground hydrogen storage (UHS), involves the multi-phase fluid transport in structurally disordered or heterogeneous porous media (e.g., soils and rocks). Furthermore, such multi-phase fluid transport is likely to repeatedly occur due to successive fluid injections and extractions, thus, resulting in cyclic drainage-imbibition processes. To complement our preceding study, we conducted a follow-up study with microfluidic pore-network devices with a square solid shape (Type II) to further advance our understanding on the effect of the pore shape (aspect ratio, Type I: 5-6 > Type II: ~1), pore-space heterogeneity (coefficient of variation, COV = 0, 0.25, and 0.5), and flow rates (Q = 0.01 and 0.1 mL/min) on the repetitive two-phase fluid flow in general porous media. The influence of pore shape and pore-space heterogeneity were observed to be more prominent when the flow rate was low (e.g., Q = 0.01 mL/min in this study) on the examined outcomes, including the drainage and imbibition patterns, the similarity of those patterns between repeated steps, the sweep efficiency and residual saturation of the nonwetting fluid, and fluid pressure. On the other hand, a higher flow rate (e.g., Q = 0.1 mL/min in this study) appeared to outweigh those factors for the Type II structure, owing to the low aspect ratio (~1). It was also suggested that the flow morphology, sweep efficiency, residual saturation, and required pressure gradient may not severely fluctuate during the repeated drainage--imbibition processes; instead, becoming stabilized after 4-5 cycles, regardless of the aspect ratio, COV, and Q. Implications of the study results for PM-CAES and UHS are discussed as a complementary analysis at the end of this manuscript.

4.
PLoS One ; 18(1): e0280385, 2023.
Article in English | MEDLINE | ID: mdl-36662769

ABSTRACT

BACKGROUND: This work aims to present a fast, affordable, and reproducible three-cell co-culture system that could represent the different cellular mechanisms of atherosclerosis, extending from atherogenesis to pathological intimal thickening. METHODS AND RESULTS: We built four culture models: (i) Culture model #1 (representing normal arterial intima), where human coronary artery endothelial cells were added on top of Matrigel-coated collagen type I matrix, (ii) Culture model #2 (representing atherogenesis), which demonstrated the subendothelial accumulation and oxidative modification of low-density lipoproteins (LDL), (iii) Culture model #3 (representing intimal xanthomas), which demonstrated the monocyte adhesion to the endothelial cell monolayer, transmigration into the subendothelial space, and transformation to lipid-laden macrophages, (iv) Culture model #4 (representing pathological intimal thickening), which incorporated multiple layers of human coronary artery smooth muscle cells within the matrix. Coupling this model with different shear stress conditions revealed the effect of low shear stress on the oxidative modification of LDL and the upregulation of pro-inflammatory molecules and matrix-degrading enzymes. Using electron microscopy, immunofluorescence confocal microscopy, protein and mRNA quantification assays, we showed that the behaviors exhibited by the endothelial cells, macrophages and vascular smooth muscle cells in these models were very similar to those exhibited by these cell types in nascent and intermediate atherosclerotic plaques in humans. The preparation time of the cultures was 24 hours. CONCLUSION: We present three-cell co-culture models of human atherosclerosis. These models have the potential to allow cost- and time-effective investigations of the mechanobiology of atherosclerosis and new anti-atherosclerotic drug therapies.


Subject(s)
Atherosclerosis , Endothelial Cells , Humans , Coculture Techniques , Endothelial Cells/metabolism , Muscle, Smooth, Vascular/metabolism , Atherosclerosis/metabolism , Macrophages/metabolism , Myocytes, Smooth Muscle/metabolism
5.
Micromachines (Basel) ; 13(7)2022 Jun 28.
Article in English | MEDLINE | ID: mdl-35888838

ABSTRACT

Knowing the meniscus shape of confined drops is important for understanding how they make first contact and then coalesce. When imaged from the top view by brightfield microscopy, a liquid drop (e.g., corn syrup) confined in a Hele-Shaw cell, surrounded by immiscible liquid (e.g., mineral oil), had a dark annulus, and the width of the annulus decreased with increasing concentration of corn syrup. Since the difference in the annulus width was presumed to be related to the meniscus shape of the drops, three-dimensional images of the drops with different concentrations were obtained using confocal fluorescence microscopy, and their cross-sectional meniscus profile was determined by image processing. The meniscus of the drops remained circular despite varying concentration. Since the refractive index of corn syrup increased with concentration, while the surface tension coefficient between corn syrup and mineral oil remained unchanged, the observed change in the annulus width was then attributed to the refraction of light passing through the drop's meniscus. As such, a ray optics model was developed, which predicted that the annulus width of the drop would decrease as the refractive index of the drop approached that of the surrounding liquid. Therefore, the dark annulus of the drops in the Hele-Shaw cell was caused by the refraction of light passing through the circular meniscus of the drop.

6.
Acta Biomater ; 138: 182-192, 2022 01 15.
Article in English | MEDLINE | ID: mdl-34774784

ABSTRACT

Polyelectrolyte complex (PEC) hydrogels are advantageous as therapeutic agent and cell carriers. However, due to the weak nature of physical crosslinking, PEC swelling and cargo burst release are easily initiated. Also, most current cell-laden PEC hydrogels are limited to fibers and microcapsules with unfavorable dimensions and structures for practical implantations. To overcome these drawbacks, alginate (Alg)/poly-L-ornithine (PLO) PEC hydrogels are fabricated into microcapsules, fibers, and bulk scaffolds to explore their feasibility as drug and cell carriers. Stable Alg/PLO microcapsules with controllable shapes are obtained through aqueous electrospraying technique, which avoids osmotic shock and prolongs the release time. Model enzyme and nanosized cargos are successfully encapsulated and continuously released for more than 21 days. Alg/PLO PEC fibers are then prepared to encapsulate brown adipose progenitors (BAPs) and Jurkat T cells. The electrostatic interactions between Alg and PLO are found to facilitate the printability and self-support ability of Alg/PLO bioinks. Alg/PLO PEC fibers and scaffolds support cell proliferation, differentiation, and functionalization. These results demonstrate new options for biocompatible PEC hydrogel preparation and improve the understanding of PEC hydrogels as drug and cell carriers. STATEMENT OF SIGNIFICANCE: In this study, the concept of polyelectrolyte complex hydrogel networks as drug and cell carriers has been demonstrated. Their feasibility to achieve sustained drug release and cell functionality was explored, from microcapsules to fibers to three-dimension printed scaffolds. PEC microcapsules with controllable shapes were obtained. Therapeutic drugs can be encapsulated and continuously release for more than 21 days. Benefiting from the dynamic interactions of physically crosslinked PEC, self-healing fibers were achieved. Besides, the electrostatic interactions between polyelectrolytes were found to facilitate the printability and self-support ability of PEC bioinks. The PEC fibers and scaffolds with controllable structure supported cell proliferation, differentiation, and function. The outcome of current research promotes design of new biocompatible PEC hydrogels and potential drug and cell carriers.


Subject(s)
Alginates , Hydrogels , Peptides , Polyelectrolytes , Tissue Scaffolds
7.
Small ; 17(52): e2104762, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34723427

ABSTRACT

Lightweight and elastically deformable soft materials that are thermally conductive are critical for emerging applications in wearable computing, soft robotics, and thermoregulatory garments. To overcome the fundamental heat transport limitations in soft materials, room temperature liquid metal (LM) has been dispersed in elastomer that results in soft and deformable materials with unprecedented thermal conductivity. However, the high density of LMs (>6 g cm-3 ) and the typically high loading (⩾85 wt%) required to achieve the desired properties contribute to the high density of these elastomer composites, which can be problematic for large-area, weight-sensitive applications. Here, the relationship between the properties of the LM filler and elastomer composite is systematically studied. Experiments reveal that a multiphase LM inclusion with a low-density phase can achieve independent control of the density and thermal conductivity of the elastomer composite. Quantitative design maps of composite density and thermal conductivity are constructed to rationally guide the selection of filler properties and material composition. This new multiphase material architecture provides a method to fine-tune material composition to independently control material and functional properties of soft materials for large-area and weight-sensitive applications.

8.
Biomaterials ; 261: 120293, 2020 12.
Article in English | MEDLINE | ID: mdl-32877763

ABSTRACT

Periodontitis is a chronic inflammatory disease caused by complex interactions between the host immune system and pathogens that affect the integrity of periodontium. To prevent disease progression and thus preserve alveolar bone structure, simultaneous anti-inflammatory and osteogenic intervention are essential. Hence, a glycogen synthase kinase 3 beta inhibitor (BIO) was selected as a potent inflammation modulator and osteogenic agent to achieve this treatment objective. BIO's lack of osteotropicity, poor water solubility, and potential long-term systemic side effects, however, have hampered its clinical applications. To address these limitations, pyrophosphorylated Pluronic F127 (F127-PPi) was synthesized and mixed with regular F127 to prepare an injectable and thermoresponsive hydrogel formulation (PF127) of BIO, which could adhere to hard tissue and gradually release BIO to exert its therapeutic effects locally. Comparing to F127 hydrogel, PF127 hydrogels exhibited stronger binding to hydroxyapatite (HA). Additionally, BIO's solubility in PF127 solution was dramatically improved over F127 solution and the improvement was proportional to the polymer concentration. When evaluated on a rat model of periodontitis, PF127-BIO hydrogel treatment was found to be very effective in preserving alveolar bone and ligament, and preventing periodontal inflammation, as shown by the micro-CT and histological data, respectively. Altogether, these findings suggested that the thermoresponsive PF127 hydrogel is an effective local drug delivery system for better clinical management of periodontitis and associated pathologies.


Subject(s)
Periodontitis , Poloxamer , Animals , Glycogen Synthase Kinase 3 , Hydrogels , Periodontitis/drug therapy , Periodontium , Rats
9.
J Eukaryot Microbiol ; 67(6): 687-690, 2020 11.
Article in English | MEDLINE | ID: mdl-32702141

ABSTRACT

We describe an inexpensive magnetic cell patterning method as a tool for protozoologists. The ciliate Vorticella convallaria is useful for various biofluidics applications. Here, we show that V. convallaria will ingest metal beads and that permanent magnets can be used to pattern cells in Petri dishes or a microfluidic device. Patterning is reversibly achieved by placing magnets at the point of desired cell attachment. Analogous magnetic manipulation could be performed using other phagocytic cells.


Subject(s)
Cell Separation/methods , Ciliophora , Lab-On-A-Chip Devices , Magnets , Microfluidic Analytical Techniques/methods , Animals , Cytological Techniques/instrumentation , Cytological Techniques/methods , Magnetic Phenomena , Phagocytosis
10.
Carbohydr Polym ; 233: 115803, 2020 Apr 01.
Article in English | MEDLINE | ID: mdl-32059877

ABSTRACT

In this study, an injectable and self-healing hydrogel based on the boronic ester dynamic covalent bond between phenylboronic acid modified hyaluronic acid (HA-PBA) and the commercially available poly (vinyl alcohol) (PVA) is prepared and should have multi-functions for biomedical applications. The hydrogels were rapidly formed under mild conditions, and the rheological properties and in vitro degradation were systematically characterized. The HA-based hydrogels possessed good injectability and self-healing properties because of the dynamic bond. Moreover, due to the sensitivity of boronic ester to the biologically relevant concentration of hydrogen peroxide (H2O2), a major reactive oxygen species (ROS), the injectable hydrogel could be used as a H2O2/ROS responsive drug delivery system. The hydrogels supported good viability of encapsulated neural progenitor cells (NPC) and protected NPC from ROS induced damage in vitro when H2O2 was present in the media. The dynamic hydrogels were further applied as bio-inks for 3D printing/bioprinting. Overall, this facilely prepared dynamic hydrogel based on HA-PBA and PVA may have many potential biomedical applications, including drug delivery, 3D culture of cells, and 3D bioprinting.

11.
HardwareX ; 8: e00121, 2020 Oct.
Article in English | MEDLINE | ID: mdl-35498249

ABSTRACT

Hydrogel beads are widely used in various applications, but producing such beads often requires complicated devices. Instead, we propose an easy-to-adopt, cost effective, open source hydrogel bead generator. This generator consists of two modules. The first module rotates two immiscible liquids in rigid body motion: mineral oil as the continuous phase (CP) liquid on top, and a hydrogel cross-linking (CL) liquid at bottom. The second module injects a hydrogel pre-polymer solution as the dispersed phase (DP) liquid into the rotating CP liquid. As the DP liquid flows out of a syringe needle, its drops are pinched off by the shear force from the CP liquid, and move with the CP liquid while settling down. When the drops enter the CL liquid, they become hydrogel beads. Experiments using water and mineral oil showed that the size of produced drops could be controlled by adjusting the flow speed of the CP and DP liquids. A demonstration using alginate showed that the proposed generator could successfully create alginate gel beads of uniform size and shape.

12.
J Vis Exp ; (151)2019 09 13.
Article in English | MEDLINE | ID: mdl-31566611

ABSTRACT

Mechanical stimuli are known to modulate biological functions of cells and tissues. Recent studies have suggested that compressive stress alters growth plate cartilage architecture and results in growth modulation of long bones of children. To determine the role of compressive stress in bone growth, we created a microfluidic device actuated by pneumatic pressure, to dynamically (or statically) compress growth plate chondrocytes embedded in alginate hydrogel cylinders. In this article, we describe detailed methods for fabricating and characterizing this device. The advantages of our protocol are: 1) Five different magnitudes of compressive stress can be generated on five technical replicates in a single platform, 2) It is easy to visualize cell morphology via a conventional light microscope, 3) Cells can be rapidly isolated from the device after compression to facilitate downstream assays, and 4) The platform can be applied to study mechanobiology of any cell type that can grow in hydrogels.


Subject(s)
Chondrocytes/cytology , Lab-On-A-Chip Devices , Microfluidics , Stress, Mechanical , Alginates , Animals , Bone Development , Cartilage , Cell Culture Techniques , Compressive Strength , Equipment Design , Growth Plate , Humans , Hydrogels/metabolism , Pressure
13.
Lab Chip ; 18(14): 2077-2086, 2018 07 10.
Article in English | MEDLINE | ID: mdl-29897088

ABSTRACT

Hyaline cartilage is a specialized type of connective tissue that lines many moveable joints (articular cartilage) and contributes to bone growth (growth plate cartilage). Hyaline cartilage is composed of a single cell type, the chondrocyte, which produces a unique hydrated matrix to resist compressive stress. Although compressive stress has profound effects on transcriptional networks and matrix biosynthesis in chondrocytes, mechanistic relationships between strain, signal transduction, cell metabolism, and matrix production remain superficial. Here, we describe development and validation of a polydimethylsiloxane (PDMS)-based pneumatic microfluidic cell compression device which generates multiple compression conditions in a single platform. The device contained an array of PDMS balloons of different sizes which were actuated by pressurized air, and the balloons compressed chondrocytes cells in alginate hydrogel constructs. Our characterization and testing of the device showed that the developed platform could compress chondrocytes with various magnitudes simultaneously with negligible effect on cell viability. Also, the device is compatible with live cell imaging to probe early effects of compressive stress, and it can be rapidly dismantled to facilitate molecular studies of compressive stress on transcriptional networks. Therefore, the proposed device will enhance the productivity of chondrocyte mechanobiology studies, and it can be applied to study mechanobiology of other cell types.


Subject(s)
Chondrocytes/cytology , Lab-On-A-Chip Devices , Mechanical Phenomena , Biomechanical Phenomena , Cell Survival , Time Factors
14.
Phys Biol ; 14(6): 066002, 2017 11 16.
Article in English | MEDLINE | ID: mdl-28862154

ABSTRACT

Vorticella convallaria is a sessile protozoan of which the spasmoneme contracts on a millisecond timescale. Because this contraction is induced and powered by the binding of calcium ions (Ca2+), the spasmoneme showcases Ca2+-powered cellular motility. Because the isometric tension of V. convallaria increases linearly with its stalk length, it is hypothesized that the contractility of V. convallaria during unhindered contraction depends on the stalk length. In this study, the contractile force and energetics of V. convallaria cells of different stalk lengths were evaluated using a fluid dynamic drag model which accounts for the unsteadiness and finite Reynolds number of the water flow caused by contracting V. convallaria and the wall effect of the no-slip substrate. It was found that the contraction displacement, peak contraction speed, peak contractile force, total mechanical work, and peak power depended on the stalk length. The observed stalk-length-dependencies were simulated using a damped spring model, and the model estimated that the average spring constant of the contracting stalk was 1.34 nN µm-1. These observed length-dependencies of Vorticella's key contractility parameters reflect the biophysical mechanism of the spasmonemal contraction, and thus they should be considered in developing a theoretical model of the Vorticella spasmoneme.


Subject(s)
Calcium/metabolism , Oligohymenophorea/physiology , Biomechanical Phenomena , Energy Metabolism , Stress, Mechanical
15.
Biomicrofluidics ; 11(3): 034119, 2017 May.
Article in English | MEDLINE | ID: mdl-28670352

ABSTRACT

Vorticella convallaria is a protozoan attached to a substrate by a stalk which can contract in less than 10 ms, translating the zooid toward the substrate with a maximum Reynolds number of ∼1. Following contraction, the stalk slowly relaxes, moving the zooid away from the substrate, which results in creeping flow. Although Vorticella has long been believed to contract to evade danger, it has been suggested that its stalk may contract to enhance food transport near the substrate. To elucidate how Vorticella utilizes its contraction-relaxation cycle, we investigated water flow caused by the cycle, using a computational fluid dynamics model validated with an experimental scale model and particle tracking velocimetry. The simulated flow was visualized and analyzed by tracing virtual particles around the Vorticella. It is observed that one cycle can displace particles up to ∼190 µm with the maximum net vertical displacement of 3-4 µm and that the net transport effect becomes more evident over repeated cycles. This transport effect appears to be due to asymmetry of the contraction and relaxation phases of the flow field, and it can be more effective on motile food particles than non-motile ones. Therefore, our Vorticella model enabled investigating the fluid dynamics principle and ecological role of the transport effects of Vorticella's stalk contraction.

16.
J Biomech Eng ; 139(4)2017 Apr 01.
Article in English | MEDLINE | ID: mdl-28005134

ABSTRACT

The elasticity of soft biological materials is a critical property to understand their biomechanical behaviors. Atomic force microscopy (AFM) indentation method has been widely employed to measure the Young's modulus (E) of such materials. Although the accuracy of the method has been recently evaluated based on comparisons with macroscale E measurements, the repeatability of the method has yet to be validated for rigorous biomechanical studies of soft elastic materials. We tested the AFM indentation method using colloidal probes and polyacrylamide (PAAM) gels of E < 20 kPa as a model soft elastic material after having identified optimal trigger force and probe speed. AFM indentations repeated with time intervals show that the method is well repeatable when performed carefully. Compared with the rheometric method and the confocal microscopy indentation method, the AFM indentation method is evaluated to have comparable accuracy and better precision, although these elasticity measurements appear to rely on the compositions of PAAM gels and the length scale of measurement. Therefore, we have confirmed that the AFM indentation method can reliably measure the elasticity of soft elastic materials.


Subject(s)
Acrylic Resins , Hardness Tests/methods , Microscopy, Atomic Force/methods , Colloids , Elastic Modulus , Nanotechnology , Reproducibility of Results
17.
Langmuir ; 31(35): 9684-93, 2015 Sep 08.
Article in English | MEDLINE | ID: mdl-26270154

ABSTRACT

The stiffness of the extracellular matrix (ECM) plays an important role in controlling cell functions. As an alternative to the ECM, hydrogels of tunable elasticity are widely used for in vitro cell mechanobiology studies. Therefore, characterizing the Young's modulus of the hydrogel substrate is crucial. In this paper, we propose a confocal microscopy indentation method for measuring the elasticity of polyacrylamide gel as a model hydrogel. Our new indentation method is based on three-dimensional imaging of the indented gel using confocal microscopy and automated image processing to measure indentation depth from the three-dimensional image stack. We tested and validated our method by indenting polyacrylamide gels of different rigidities with various sphere indentors and by comparing it with the rheometric method. Our measurements show consistent results regardless of the type of the indentors and agree with rheometric measurements. Therefore, the proposed confocal microscopy indentation method can accurately measure the stiffness of hydrogels.


Subject(s)
Acrylic Resins/chemistry , Elasticity , Hydrogels/chemistry , Imaging, Three-Dimensional/methods , Microscopy, Confocal/methods , Gels/chemistry
18.
Biophys J ; 105(8): 1796-804, 2013 Oct 15.
Article in English | MEDLINE | ID: mdl-24138855

ABSTRACT

Microscopic sessile suspension feeders are a critical component in aquatic ecosystems, acting as an intermediate trophic stage between bacteria and higher eukaryotic taxa. Because they live attached to boundaries, it has long been thought that recirculation of the feeding currents produced by sessile suspension feeders inhibits their ability to access fresh fluid. However, previous models for the feeding flows of these organisms assume that they feed by pushing fluid perpendicular to surfaces they live upon, whereas we observe that sessile suspension feeders often feed at an angle to these boundaries. Using experiments and calculations, we show that living suspension feeders (Vorticella) likely actively regulate the angle that they feed relative to a substratum. We then use theory and simulations to show that angled feeding increases nutrient and particle uptake by reducing the reprocessing of depleted water. This work resolves an open question of how a key class of suspension-feeding organisms escapes physical limitations associated with their sessile lifestyle.


Subject(s)
Aquatic Organisms/physiology , Ecosystem , Feeding Behavior , Oligohymenophorea/physiology , Diffusion , Microscopy , Models, Biological , Suspensions , Time Factors , Time-Lapse Imaging , Torque
19.
Biophys J ; 103(5): 860-7, 2012 Sep 05.
Article in English | MEDLINE | ID: mdl-23009835

ABSTRACT

The millisecond stalk contraction of the sessile ciliate Vorticella convallaria is powered by energy from Ca(2+) binding to generate contractile forces of ∼10 nN. Its contractile organelle, the spasmoneme, generates higher contractile force under increased stall resistances. By applying viscous drag force to contracting V. convallaria in a microfluidic channel, we observed that the mechanical force and work of the spasmoneme depended on the stalk length, i.e., the maximum tension (150-350 nN) and work linearly depended on the stalk length (∼2.5 nN and ∼30 fJ per 1 µm of the stalk). This stalk-length dependency suggests that motor units of the spasmoneme may be organized in such a way that the mechanical force and work of each unit cumulate in series along the spasmoneme.


Subject(s)
Calcium/metabolism , Mechanical Phenomena , Oligohymenophorea/metabolism , Biomechanical Phenomena , Microfluidic Analytical Techniques , Oligohymenophorea/cytology , Stress, Mechanical , Viscosity
20.
Langmuir ; 27(21): 13390-9, 2011 Nov 01.
Article in English | MEDLINE | ID: mdl-21905684

ABSTRACT

Lateral force microscopy (LFM) is an application of atomic force microscopy (AFM) to sense lateral forces applied to the AFM probe tip. Recent advances in tissue engineering and functional biomaterials have shown a need for the surface characterization of their material and biochemical properties under the application of lateral forces. LFM equipped with colloidal probes of well-defined tip geometries has been a natural fit to address these needs but has remained limited to provide primarily qualitative results. For quantitative measurements, LFM requires the successful determination of the lateral force or torque conversion factor of the probe. Usually, force calibration results obtained in air are used for force measurements in liquids, but refractive index differences between air and liquids induce changes in the conversion factor. Furthermore, in the case of biochemically functionalized tips, damage can occur during calibration because tip-surface contact is inevitable in most calibration methods. Therefore, a nondestructive in situ lateral force calibration is desirable for LFM applications in liquids. Here we present an in situ hydrodynamic lateral force calibration method for AFM colloidal probes. In this method, the laterally scanned substrate surface generated a creeping Couette flow, which deformed the probe under torsion. The spherical geometry of the tip enabled the calculation of tip drag forces, and the lateral torque conversion factor was calibrated from the lateral voltage change and estimated torque. Comparisons with lateral force calibrations performed in air show that the hydrodynamic lateral force calibration method enables quantitative lateral force measurements in liquid using colloidal probes.

SELECTION OF CITATIONS
SEARCH DETAIL
...